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Abstract: Malaria is a disease activated by a type of microscopic parasite transmitted from infected
female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the
world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods
require tedious work for its detection. Recently, some automated methods have been proposed that
exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep
learning approaches modernize the world with their superior performance. Convolutional Neural
Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden
layers of the model without any handcrafting. The detection of malaria-infected red blood cells
from segmented microscopic blood images using convolutional neural networks can assist in quick
diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this
paper are two-fold. First, we evaluate the performance of different existing deep learning models
for efficient malaria detection. Second, we propose a customized CNN model that outperforms all
observed deep learning models. It exploits the bilateral filtering and image augmentation techniques
for highlighting features of red blood cells before training the model. Due to image augmentation
techniques, the customized CNN model is generalized and avoids over-fitting. All experimental
evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the
proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.

Keywords: malaria detection; Plasmodium parasite; transfer learning; convolutional neural networks;
computer aided design (CAD)

1. Introduction

Malaria is a disease activated by a type of microscopic parasite transmitted from
infected female mosquito bites to humans. The malaria parasite ruptures the red blood
cells in human blood and replicates these parasites to other cells. Malaria patients usually
feel very sick, with high fever, headache, muscle pain, and fatigue. According to the World
Health Organization (WHO), malaria parasites caused the death of 438,000 people in 2015
and 620,000 people in 2017, and infection cases are around 300–500 million annually [1].
Light microscopy is a standard method for identifying malaria disease and all its species of
parasite by screening films of red blood cells. Other methods, like rapid diagnostic tests [2],
are also used for a prompt parasite-based diagnosis. It is a widely used test with a false
positive rate of less than 10%. It is helpful in initial diagnosis; however, its performance
is affected by the quality of the product and parasite-related factors [3]. For examining
malaria infection in light microscopy, the glass slide is prepared by applying a drop of
blood, which is merged with the Giemsa staining solution to enhance the visibility of
parasites in red blood cells under a microscope. Furthermore, thick and thin smears of
blood are used for malaria diagnosis. A thick smear typically identifies the existence of

Appl. Sci. 2021, 11, 2284. https://doi.org/10.3390/app11052284 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8384-2830
https://orcid.org/0000-0002-6145-5848
https://orcid.org/0000-0003-4877-8287
https://doi.org/10.3390/app11052284
https://doi.org/10.3390/app11052284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052284
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2284?type=check_update&version=2


Appl. Sci. 2021, 11, 2284 2 of 19

the parasite in blood while a thin smear detects species of malaria and parasite stages. An
expert microscopist usually takes 20 to 30 min for a careful examination of a single blood
film to count the number of infectious cells by inspecting the variations in the shape, color,
and size characteristics of red blood cells.

Millions of blood smear films are manually examined by expert pathologists every
year and it takes a massive human and economic effort to diagnose malaria. Moreover, the
parasite counts from blood films should be accurate for a correct diagnosis and classification
of disease severity. For example, if malaria cells were not present in a patient but the doctor
erroneously prescribed antibiotics, it would unnecessarily cause abdominal pain or nausea
to the suspected patient [4]. Diagnosis of malaria should be robust with high sensitivity
(less false negatives) towards capturing parasites at all stages of the malaria life-cycle.
Correct diagnosis at earlier stages can be helpful for the treatment of malaria in endemic
regions where expert pathologists are fewer, and the workload of screening blood films
is massive. Automatic malaria detection methods can serve many patients with fast,
cost-effective, and accurate diagnoses.

Traditional methods of automating the malaria detection process involve complex
image-processing techniques with hand-engineered features e.g., shape, color, intensity,
size, and texture [5–7]. In these methods, the red blood cells are detected from microscopic
images by using different segmentation techniques. After the selection of appropriate
features for red blood cells, a computed set of features is used in the classification of
segmented images into infected and uninfected classes. For example, morphological-
based approaches are used to segment cell images with structuring elements to enhance
the characteristics of red blood cells, such as the roundness of cells, which improves the
classification accuracy. In the literature, various methods are adopted for the segmentation,
feature extraction, and classification of malaria diagnosis [8]. After analyzing conventional
and recent malaria detection methods, it is observed that there is a tradeoff between
accuracy and the computational complexity of models, that is, when the accuracy of a model
increases, its computational complexity also increase [9]. For example, the computation
time of classification by support vector machine (SVM) is faster than a deep neural network,
but the accuracy of a deep neural network is found to be higher than SVM.

In recent years, deep learning (DL) techniques are exploited for automated malaria di-
agnosis with appreciable detection rates. Deep learning models eliminate the computation
of hand-crafted features, as the hidden layers of deep models extract features automatically
by analyzing the data. Deep learning models require large datasets for training neural
networks and to improve the accuracy of the model. However, in medical applications
like malaria diagnosis, relatively small datasets are available. This is because building
an annotated dataset requires input from pathologists that is not readily available. To
overcome the paucity of the dataset, recently introduced image augmentation techniques
in deep learning models provide better generalization and reduce the over-fitting. Image
augmentation increases the dataset by taking the original image and transforming it into
multiple images by using transformation techniques such as rotation, shear and translation,
thus enabling the model to achieve higher accuracy. A convolutional neural network (CNN)
is widely used for classification tasks and it is computationally efficient too [10].

In this paper, we evaluate the effectiveness of various existing deep learning models for
malaria detection from microscopic blood images, and also propose an efficient DL method
for the classification of infected and uninfected malaria cells. The proposed customized
CNN-based algorithm outperforms all observed deep learning models. The proposed
method uses bilateral filtering for improving image quality and image augmentation
techniques for better generalization of the model. Our model has a simple CNN architecture
containing 5 convolutional and pooling layers. The performance of the proposed method is
evaluated on a benchmark malaria dataset, and the results are compared with other existing,
similar techniques. The results show that our method achieves excellent performance and
outperforms the compared techniques.
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The rest of the paper is organized as follows. The literature on automated malaria
detection is reviewed in Section 2. The various deep learning models used for performance
evaluation are presented in Section 3. The proposed deep learning method is presented
in Section 4. The details of the test dataset and preprocessing of the data, performance
evaluation of the proposed method, and comparison of deep learning models are described
in Section 5. The research is concluded in Section 6.

2. Related Work

The traditional pipeline of automating the process of malaria diagnosis follows four
steps: image pre-processing, cell segmentation, feature selection, and classification of
infected and uninfected malaria cells, as shown in Figure 1. For each step, different methods
are proposed in the literature. Image pre-processing methods enhance the quality of blood
smear images to improve the accuracy of later processing steps such as cell segmentation,
feature extraction, and classification. Any kind of impurities in the images can affect the
performance of the later processing steps and are vulnerable to the misclassification of
malaria cells. Different smoothing filters, e.g., Gaussian, median, and geometric mean
filters, are extensively used to suppress noise in microscopic images [11,12]. Morphological
operators have also been used to remove impurities by improving cell contours and
suppressing noise by filling holes [13]. Adaptive threshold and histogram equalization
is also used to enhance the resolution and contrast of the images [14]. Malaria detection
methods e.g., [15] used HSV color space and grayscale color normalization to reduce
illumination variation in cells. Low-pass filters have also been exploited to eliminate
noise-related frequency components from the microscopic images [16]. Some techniques
e.g., [17] used the Laplacian filter to sharpen edges and to enhance the red blood cell (RBC)
boundaries in images. The method in [18] used the Wiener filter to remove the blurriness
induced in the microscopic images due to unfocussed optics.
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Figure 1. Traditional automated malaria detection pipeline.

Cell segmentation is the most significant step in any automated malaria detection
system. Pre-processed microscopic images are segmented into small non-overlapping
regions containing the red blood cells (RBC), the white blood cells (WBC), the malaria
parasites, and other artifacts. Image-based methods such as Chan–Vese segmentation, hole-
filling algorithms, and histogram-method-based methods are popular for cell segmentation
in an unsupervised manner [19]. A green channel of RGB images is used to segment cells in
case of low-contrast images in [20]. In [21], the Otsu threshold is used to segment RBCs from
enhanced images. In malaria detectors such as [22,23], thresholding techniques are applied
in Hue-Saturation-Value (HSV) color space on S and V channels to segment cells from
microscopic images. The fuzzy divergence technique is used for cell segmentation in [24].
The fuzzy rule-based segmentation method is applied in [25] to segment malaria cells
from images of three different color spaces. In [13], morphological-based approaches use
grayscale granulometry to capture regional extrema and segment cells. Hough transform
is used in [26] to identify RBC using its shape, and k-means clustering is used to segment
cells from unlabeled data in [27]. Marker controlled watershed algorithm is used in [28,29]
to separate the overlapping cells that complicate the segmentation process. A graph-cuts
based technique for cell segmentation is proposed in [30]. The methods in [31,32] utilize
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the structure, geometry, and color information of cells to identify WBC and gametocytes.
Machine learning approaches and neural networks are used for cell segmentation in [33].

Feature selection for cell images depends on the shape, texture, and color of red
blood cells. HSV color space and green channel of RGB color space are preferred for
feature extraction because the color features are prominent in stained blood images [31,34].
Histogram of oriented gradients (HOG) features [26], Haralick’s texture features [35], local
binary patterns [36], and various other feature-selection methods [37] have been used to
extract features from cell images. Types of parasite can be identified from cell images
by using the color and shape information [38]. Morphological operations like thinning
and grayscale granulometry capture relevant information from the intensity of image
pixels [39,40]. In [12], the support vector machine (SVM) and Bayesian learning are used
for the classification of malaria cells by utilizing the discriminative feature set.

In the malaria detection algorithm presented in [41], linear Euclidean distance classifier
with Poisson distribution and Gabor filtering are used to detect malaria cells in blood
smear images. An adaptive neuro-fuzzy interface system (ANFIS) is used to diagnose
species of malaria infection in [42]. A genetic algorithm based on chromosome-encoding
schemes and mutation strategies are also utilized to diagnose malaria-infected cells [43].
K-means clustering is used for the unsupervised detection of malaria-infected cells in [19].
In [44], SVM and artificial neural network (ANN) detect the malaria parasite by using the
information of normalized red, green, and blue, and the texture features that are invariant
to staining variations.

Deep learning (DL) revolutionized the traditional malaria detection pipeline by skip-
ping the feature selection step that requires expertise to capture variability in the angle,
position, shape, texture, color, and size of objects in images. Deep learning became popular
for medical image analysis because of its biggest advantage of learning features from un-
derlying data without any designing of feature sets. Deep learning models use non-linear
activation units for neurons in layers that discover underlying hierarchical patterns in the
data. Features are extracted using end-to-end hidden layers that learn complex decision-
making functions, leading to classification. A deep learning CNN model is used by Dong
et al. [45] for cell segmentation and deep belief networks are used for the classification of
malaria-infected and uninfected images. The CNN models [46] can recognize patterns in
microscopic images with a much higher accuracy rate than other traditional approaches.
Fully convolutional regression networks (FCRN) [47] regress CNN spatial feature maps
to detect and count cells in microscopic images. Deep learning approaches used for cell
segmentation provide more accurate results as compared to previous techniques.

The convolutional neural networks are used for images by exploiting the information
of spatial local correlation between adjacent pixels by using shared weights, local receptive
fields, and down-sampling of feature maps. In recent researches, customized CNN with
focus stack images showed improvements in classification performance [48]. In [49], a
customized CNN model with 16 layers is proposed that outperforms all transfer learning
models. The CNN Models AlexNet and VGG-16 are compared in [50] to improve the
accuracy of malaria detection. Hung et al. [51] uses two-stage classification with faster
RCNN for detecting red blood cells in images and and used AlexNet for the classification
of malaria cells. The method in [52] proposed LeNet-5 for automated diagnosis of malaria.
The VGG-16 is unified with SVM in [53] to classify falciparum malaria cells. Pre-trained CNN
models trained on imagenet weights e.g., VGG, ResNet, etc. are used as feature extractors
in [54] and classify malaria-infected and uninfected cells. The malaria detectors presented
in [55,56] also use deep learning. An ensemble of three deep learning models, customized
CNN, VGG-16, and CNN with SVM, is proposed in [57] for malaria parasite detection.

3. Compared Deep Learning Models

In visual recognition tasks, the computer processes images by their pixel values.
To process a 30 × 30 color image (in RGB), 2700 (30 × 30 × 3) pixel values need to be
processed. Neural network is a sequence of layers with neurons that distinguish underlying
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relationships in a set of data. In fully connected neural networks, if we take an input image
with 30 × 30 × 3 pixels, the number of weights in the first hidden layer will be 2700. In
real life, we have large images with 250 × 250 dimensions and more. If we take an input
image with 250 × 250 × 3 pixels, then the number of weights in the first hidden layer will
be 187,500. Therefore, we need to deal with a massive amount of parameters and need
more neurons for deep networks that can cause over-fitting.

In a convolutional neural network (CNN), the neuron in a layer will only connect to a
small number of neurons in the previous layer, instead of all neurons in a fully connected
way, which is why we need to handle fewer weights and fewer neurons. This is the reason
that CNN performs better than fully connected neural networks for image classification
tasks [58]. The CNN architecture has two important layers: convolutional layers and
pooling layers. The convolutional layer performs the convolution operation on images
to extract feature maps and the pooling layer reduces the size of the feature maps by
performing down-sampling.

Convolutional neural networks with several hidden layers and a large number of
parameters are fantastic for image classification tasks [59]. CNN masters spatial patterns
from images which are also invariant to translation and learn the different features of
images. VGG, ResNet, DenseNet, and Inception [60–62] are popular due to their outstand-
ing performance in ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [63].
Designing a network architecture is a tedious process and requires a lot of effort. There are
various architectures designed for different problems. For the detection of malaria-infected
cells, the performance of various architectures of CNN, e.g., customized CNN model, VGG,
ResNet, DenseNet, Inception, Xception, and SqueezeNet are analyzed in this research. Each
architecture is briefly introduced in the following sections.

3.1. VGG

This is a CNN model designed by Visual Geometry Group (VGG) of Oxford University
for large-scale image recognition [64]. The VGG model is one of the prominent models in
the ILSVRC-2014 competition [63] and accomplishes 92.7% accuracy on the testing data
of ImageNet. It has two flavors: VGG16 and VGG19. The former has 16 layers with 5
max-pooling layers and 5 blocks of convolutional layers, where each block has two or
more convolutional layers. The convolutional layers of this model only use 3 × 3 kernel
size and the max-pool layer uses 2 × 2 kernel size. The VGG16 beats the previous models
in ILSVRC-2012 and ILSVRC-2013 competitions. The VGG19 has 19 layers with 5 max-
pooling layers and 5 blocks of convolutional layers. The only difference between VGG19
and VGG16 is the last 3 convolution blocks, which have 4 convolutional layers in VGG19
and 3 convolutional layers in VGG16.

3.2. ResNet

Residual Neural Network (ResNet) [60] is a convolutional neural network that can
train a large number of layers with a compelling performance. It provides a state-of-the-art
solution to the vanishing gradient problem. The training of neural networks relies on the
back-propagation process, which needs a gradient descent to minimize the loss function
and learns the model weights. For a large number of layers, the gradient becomes smaller,
and even vanishes due to repeated multiplication, and performance degradation occurs
with each additional layer. ResNet uses an identity skip connection that skips one or more
layers and reuses the feature maps from previous layers. Skipping the layers squeezes the
network, which allows faster learning. The layers expand during training and the residual
portions of the network discover more features from the source image. ResNet has many
flavors, such as ResNet-50, ResNet-101 and ResNet-152. ResNet-V2 differs from ResNet-V1
because it uses batch normalization before each weight layer.
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3.3. DenseNet

In Dense Convolutional Neural Network (DenseNet) [61], every layer is connected
with all preceding layers and the feature maps of previous layers are used as input to the
new layer, and its feature map is used as input for the succeeding layer. The traditional
convolutional networks have a direct connection between layers, and features of previous
layers not provided to the next layer. DenseNet achieves good performance with a smaller
amount of computation. DenseNet exploits the network potential by reusing the learned
features and not learning the redundant features again in subsequent layers [65]. DenseNet
concatenates feature maps of previous layers with a new layer, while ResNet adds feature
maps of layers. Each layer of DenseNet learns a small set of new feature-maps that require
fewer parameters for training. DenseNet improves the vanishing-gradient problem by
allowing each layer to directly access the gradients from the loss function. DenseNet has
many flavors, such as DenseNet-121, DenseNet-169, and DenseNet-201.

3.4. Inception

Inception is a deep neural network designed by Google that plays an important role
in the development of convolutional network classifiers [62]. To enhance the performance
of the model in terms of accuracy and speed, inception uses a lot of tricks. It has an
inception module that performs a convolutional operation on the input with three filters of
different sizes (1 × 1, 3 × 3, 5 × 5) and also performs max-pooling. The outputs of these
4 layers (3 convolutional and 1 pooling) are concatenated and fed to the next inception
module in the network. To reduce the computational cost of the network, the number of
input channels is limited by adding 1 × 1 convolution before performing 3 × 3 and 5 × 5
convolutions, because 1 × 1 convolution operation is cheaper and reduces the number
of input channels [66]. The inception has many variants like Inception-v1, Inception-v2,
Inception-v3, and Inception Resnet-v2 [67]. The inception model evolves by using smart
factorization methods that reduce the convolution operation cost. It also reduces the
representational bottleneck in which information is lost by reducing the dimensions of
input data. The Inception-v3 model contains 11 inception modules.

3.5. Xception

Xception (extreme version of Inception) [68] is a deep neural network designed by
Google (Mountain View, CA, USA). Xception model modifies the depth-wise separable
convolution of inception model which implements 1 × 1 convolution before channel-wise
spatial convolution. The Xception network has 71 layers designed for large-scale image
recognition. There is non-linearity in the inception module after the first operation but
there is no in-between ReLU or ELU non-linearity in the Xception model. It achieves the
excellent accuracy without any intermediate activation. The Xception model also uses
residual or identity skip connections to increase accuracy that is the core idea of the ResNet
network. The Xception model outperforms VGG-16, ResNet-152, and Inception-v3 models
trained on the imagenet dataset [69]. Xception model architecture has the same number
of parameters as that of Inception-v3 but, due to effective use of these parameters, the
performance of the Xception model is improved [68]. These performance gains are not due
to increased capacity but due to the more efficient use of model parameters.

3.6. SqueezeNet

SqueezeNet [70] is a small neural network with 18 layers that can fit into a small
amount of memory and requires less bandwidth over a computer network. It has 50-times
fewer model parameters than AlexNet but it achieves AlexNet-level accuracy. In SqueezeNet,
3 × 3 filters are replaced by 1 × 1 filters, and the number of input channels to 3 × 3 filters is
decreased by using squeeze layers to reduce model parameters. Delayed down-sampling in a
network attains large activation maps that maximize accuracy with limited model parameters.
SqueezeNet has a Fire module in which the squeeze layer performs convolution by using
a 1 × 1 filter, and then the output forwards to expand layer that has a mixture of 1 × 1 and
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3 × 3 convolutions. SqueezeNet has a 50× reduced model size than AlexNet, which is a much
higher reduction than SVD and deep compression. SqueezeNet has many flavors, such as
vanilla squeezeNet and SqueezeNet with simple or complex bypass. The attributes of the DL
architectures described in this section are summarized in Table 1.

Table 1. Summary of attributes of the compared deep learning models.

Model Attributes

VGG – Multiple 3 × 3 sized kernels are used instead of large-sized kernels
which enables it to learn more complex features at a lower cost.

– The 3 × 3 kernels preserve finer-level properties of the image.
– Huge computation is needed both in terms of space and time.
– The large width of convolutional layers makes it inefficient.

ResNet – It uses an identity skip connection that skips one or more layers and
reuses the feature maps from previous layers.

– Faster learning is achieved by skipping the layers in the network.
– It handles the vanishing-gradient problem.

DenseNet – It achieves good accuracy with a smaller amount of computation.
– It reuses the learned features in subsequent layers which reduces

the its number of parameters.
– It provide better solution to vanishing-gradient problem.

Inception – It uses different size convolutions to capture details at varied scales.
– To reduce the computational cost, the number of input channels

is limited by adding 1 × 1 convolution before performing large
convolutions.

– Smart factorization methods reduce the convolution cost.
– It replaces the FC layers with global average pooling layers without

compromising the accuracy, resulting in few parameters.

Xception – It achieves the high accuracy without any intermediate activation.
– It also uses residual or identity skip connections to increase accuracy.
– It has the same number of parameters as Inception V3, the perfor-

mance improves due to efficient use of model parameters.

SqueezeNet – It requires small memory and less bandwidth over the network.
– Model parameters are reduced by using squeeze layers which per-

form convolution by using a 1 × 1 filter.
– Delayed down-sampling in a network maximizes accuracy with

limited model parameters.

4. Proposed Deep Learning Model for Malaria Detection

In this section, we present a novel neural architecture for malaria detection from
microscopic thin blood smear images. The proposed method can be divided into three
parts, data preprocessing, feature extraction, and classification. Figure 2 shows these steps
in a schematic diagram.
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Customized CNN
Input Image

Data Preprocessing

(Bilateral Filter & Data 

Augmentation)

Output

Figure 2. Block diagram of the proposed malaria detector.

Before introducing the proposed DL model for efficient malaria detection, we instigate
a data pre-processing step that is effective for improving the quality of the images. During
data acquisition, the images may get polluted with various types of noise, e.g., camera
angle and microscope positions. Different noise removal methods have been proposed in
the literature to eliminate such kinds of noise from the images. These methods include
simple blur operators such as averaging filter and non-linear filters e.g., median filter. In
our case, the RBC scans are of low resolution and contain important information about the
parasite presentation that could be degraded or lost if simple blurring methods are used.
We need an image denoising method that removes the noise from the image, preserving
the structural information present in the image. We found the bilateral filter [71] to be quite
effective in this scenario, as shown in [11].

In conventional image blurring methods, in the computation of the new pixel value,
each pixel contributes based on its distance from the filter center. The filter weights in the
bilateral filter consider both the spatial distance of the pixel from the filter and the pixel
color/intensity range differences. The former factor introduces the blur in the image and
the latter tries to preserve the structural information in the image.

Let I be an input image of size M × N which is subject to bilateral fileting of size size
(2d + 1)× (2d + 1). The value of pixel (x, y) is computed as

Ī(x, y) =
1
w ∑

−d≤i,j≤d

[

I(x + i, y + j)gr(‖I(x + i, y + j)− I(x, y)‖)gs(‖i‖, ‖j‖)
]

(1)

where Ī is the filtered image, w is the normalizing factor, and gr is the range kernel
computed as

gr(i) = exp
− i2

2σ
2
r , (2)

The gs contains the distance of pixel (i, j) from the center pixel (x, y). It is calculated as

gs(l, m) = exp
− (l2+m2)

2σ
2
s , (3)

where σr and σs are variance parameters. All images are filtered using Equation (1) and
are resized to equal dimensions (125 × 125), as the deep learning models require the same
input shape for all images of the dataset. Figure 3 shows the results of applying bilateral
filtering on sample infected and uninfected cell images.
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(a) (b)

Figure 3. Bilateral filtering results: (a) input infected and uninfected images, (b) results of applying
bilateral filtering on (a).

We propose a customized CNN model for efficient malaria detection by the classi-
fication of infected and uninfected RBC images. The input images with 125 × 125 × 3
dimensions are fed toa model with 5 convolutional layers, 5 max-pooling layers, and
2 fully-connected layers. The proposed model is shown in Figure 4. The convolutional lay-
ers of model use 3 × 3 kernel size, ReLU activation function, and 32, 64, 128, 256, 300 filters
for all five layers, respectively. By visualizing the convolutional layers of the customized
CNN model in Figure 5, it can be seen that the initial layer extracts low-level features
that are more recognizable to humans and the final convolutional layer extracts high-level
features that are more model-recognizable.

Input Image 

[125×125×3]

Convolution 1

3×3×3 & 32 filters 

Max Pooling 1

2×2 /2

Convolution 2

3×3×32 & 64 filters

Max Pooling 2

2×2 /2

Convolution 3

3×3×64 & 128 filters

Max Pooling 3

2×2 /2

Convolution 5

3×3×256 & 300 filters

Max Pooling 5

2×2 /2

FC1 (500 neurons)

& 0.5 dropout

FC2 (250 neurons)

& 0.5 dropout

Classifier

Max Pooling 4

2×2 /2

Convolution 4

3×3×128 & 256 filters

Figure 4. Proposed customized model architecture for malaria detection.
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                       Convolutional Layer 1

                       Convolutional Layer 2

                       Convolutional Layer 3

                       Convolutional Layer 4

                       Convolutional Layer 5

Figure 5. Visualizing Convolutional layers of CNN model.

All max-pooling layers of the model following the convolutional layers use 2 × 2 pool
size with the stride of 2 pixels that crisps the outputs of feature maps produced by the
convolutional layers. The output of the fourth pooling layer is fed to the fully connected
(FC) layers with 0.5 dropouts after each FC layer, and the output of the final FC layer
is fed to the sigmoid classifier. The model is trained with hyper-parameters, 64 batch
size, 25 epochs, ADAM optimizer, binary cross-entropy loss, and 0.5 dropout ratio for
regularization, as many pieces of research recommended this ratio of dropout [72]. The
dropout layer is used to reduce the over-fitting of the model and to generalize the results
of the model.

5. Experimental Evaluations and Results

In this section, we evaluate the performance of different deep learning architectures
for malaria detection using the NIH Malaria dataset [54]. A time complexity analysis is also
presented for these models. Moreover, the performance of the proposed method is also com-
pared with the existing malaria-detection algorithms using different statistical measures.

5.1. Data Acquisition

The NIH Malaria dataset [54] used to evaluate the performance of the compared
models which is publicly available on the National Institute of Health (NIH) (https:
//lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html, accessed date: 18
February 2021). Researchers developed a smartphone application attached with a tradi-
tional light microscope [9] for the screening of infected and uninfected red blood cell images
at the Lister Hill National Center for Biomedical Communications (LHNCBC), part of the
National Library of Medicine (NLM). Thin blood smear films of 50 healthy and 150 P. falci-
parum-infected patients were prepared by using the Giemsa staining solution to enhance
the visibility of parasites and were photographed at Chittagong Medical College Hospital,
Bangladesh. Images of blood films are captured by the built-in smartphone camera for
each microscopic field of view. These images are then manually annotated by expert slide
readers at the Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand. The
dataset has 27,558 cell images that are equally balanced between 13,779 parasitized and
13,779 uninfected. The cell images have variations in color distributions due to different
bloodstains during the process of data acquisition. Figure 6 shows samples of parasitized
and uninfected segmented red blood cell images from the malaria dataset.

https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html
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︸ ︷︷ ︸ ︸ ︷︷ ︸

Uninfected cells Parasitized cells

Figure 6. Sample images of parasitized (infected) and uninfected red blood cells from NIH Malaria
dataset [54].

5.2. Data Preprocessing

The NIH malaria dataset is balanced with 13,779 parasitized and 13,779 uninfected
cell images. To evaluate the performance of the deep learning models, the dataset is split
into training, testing, and validation subsets. To this end, 60% data are used for training
and 10% data for validation and the remaining 30% unseen dataset is used for testing
the performance of the trained model. Partitioning details of the dataset are presented in
Table 2.

Table 2. Partitioning of the test dataset into training, testing, and validation datasets before perform-
ing data augmentation.

Dataset Parasitized Uninfected

Training 8604 8766
Testing 4196 4076
Validation 979 952

Data augmentation techniques are usually used to improve the accuracy of deep
learning models by providing variety in the dataset [73]. Neural networks require large
datasets for better generalization and to avoid over-fitting. The image data generator
builds powerful deep learning models by using a small dataset [74]. After resizing images
of the dataset, ImageDataGenerator module of Keras library https://keras.io/ (accessed
date: 18 February 2021) is used for augmenting malaria cell images of training data by
applying image transformation operations: 0.1 zoom value, 25 degree rotation, 0.05 sheer
range with horizontal flip, (0.1, 0.1) translation for shifting both width and height. Image
augmentation is not applied to testing and validation data because model performance
is being evaluated for them. After data augmentation, the size of the training dataset
is 173,700.

5.3. Implementation Details

All experiments are performed on Google Colaboratory with GPU runtime using
28 GB RAM and 68 GB hard disk. All the models are implemented using the Python 3.6,
Keras deep learning library with TensorFlow https://www.tensorflow.org/ (accessed date:
18 February 2021). Architectures of deep learning CNN models were downloaded from the
internet and trained with hyper-parameters, such as 32 − 64 batch size, 1 × 10−4, 1 × 10−5

learning rate, 20–30 epochs, RMSProp or ADAM optimizer, binary cross-entropy loss, and

https://keras.io/
https://www.tensorflow.org/
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0.3–0.5 dropout ratio for regularization. The models were initialized with random weights
and trained on the training data using the tensorflow library.

The cross-validation technique uses an independent dataset to evaluate the perfor-
mance of the machine learning models on unseen data. To this end, the sample dataset
is partitioned into k subsets of data and then training is performed on one subset of the
data and validation on the other subset of the data. We evaluated the predictive models
through five-fold cross-validation over 5 different test sets, with each fold having 2756 test
samples and 24,802 training samples. The training data are randomly partitioned into
5 equal-sized subsets, one subset is used for validation testing and the remaining 4 subsets
are used for training. The cross-validation process is then repeated 5 times for the proposed
model, with each of the 5 subsets used exactly once as the validation data. The results of
the validations were averaged to produce a single score.

5.4. Performance Evaluation and Comparison

For binary deep learning models, the confusion matrix is used to describe the pre-
diction results on labeled test data. There are four possible outcomes of such a test:
true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN). The true-
positive represents the infected cells correctly diagnosed as infected and the true-negative
denotes the number of uninfected cells correctly diagnosed as uninfected. The uninfected
cells incorrectly diagnosed as infected are considered false-positive, and the infected cells
incorrectly diagnosed as uninfected are false-negatives. Different parametric and non-
parametric statistical measures are used in performance evaluation, including Specificity,
Sensitivity, Precision, Accuracy, F1 score, Matthews correlation coefficient (MCC), and
Cohen’s kappa (κ) [75–77].

Specificity calculates the proportion of actual negatives out of total negative observa-
tions that are predicted by an algorithm. It is also known as the true negative rate and is
computed as

Speci f icity =
TN

TN + FP
(4)

Sensitivity is the ability of an algorithm to correctly predict the true positives out of
total positive observations. It is also known as true positive rate or Recall.

Sensitivity =
TP

TP + FN
(5)

Precision shows the extent of correctness of the an algorithm in terms of positive
results. It is computed as actual positives out of total positive observations.

Precision =
TP

TP + FP
(6)

The ability of an algorithm to differentiate between healthy and infected subjects
flawlessly is called accuracy. In the case of the malaria diagnosis model, if an infected cell
image is predicted correctly by the model as infected and vice-versa, then the model has
high accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The F1 score is the weighted harmonic mean of precision and recall measures. It
provides an overall accuracy of the model using both positive and negative predictions.
It is considered to be a more reliable performance measure than accuracy and precision
metrics that can be delusive when the data are highly unbalanced [78,79]. For balancing
the classification model with precision and recall, the F1 score of the model on test data
should be high.

F1 score = 2 ×
Precision × Recall

Precision + Recall
(8)
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The Matthews correlation coefficient (MCC) evaluates the performance of a binary
classification model with a range of −1 to +1. The minimum value −1 indicates a poor
classifier while the maximum value +1 indicates a correct classifier. The MCC is regarded
as a balanced measure because it considers both positive and negative observations. A
recent research [80] showed that MCC is a more informative and realistic measure than
other parametric statistical measures. It is computed as:

MCC =
(TP × TN)− (FP × FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

Cohen’s kappa (κ) measures the agreement between total accuracy and random
accuracy of a model. Kappa value, computed as Equation (10), ranges from 0 to 1. The
lowest value 0 means no agreement and the highest value 1 means complete agreement

κ =
po − pe

1 − pe
(10)

where po is the accuracy of the model (Equation (7)) and pe is the hypothetical probability
of chance agreement, computed as

pe =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

(TP + TN + FP + FN)2

All these performance metrics are computed for each deep learning architecture and
the results are summarized in Table 3. The results reveal that the proposed malaria detection
algorithm performs better than the compared deep learning models. The proposed method
achieves more than 0.96 accuracy and F1 score, and more than 0.93 score in both MCC and
κ. The malaria detector based on the VGG19 architecture also achieves appreciative results
with an F1 and κ score of 0.9592 and 0.9185, respectively.

Table 3. Performance comparison of the proposed method and other deep learning models on NIH Malaria dataset. The
best results in each metric are marked in bold.

Model Specificity Sensitivity Precision Accuracy F1 Score MCC κ

VGG-16 0.9632 0.9538 0.9585 0.9585 0.9585 0.9170 0.9170
VGG-19 0.9655 0.9529 0.9593 0.9592 0.9592 0.9185 0.9185
Xception 0.9753 0.9255 0.9508 0.9494 0.9494 0.9002 0.8989
Densenet-121 0.9526 0.9378 0.9453 0.9452 0.9452 0.8905 0.8904
Densenet-169 0.9436 0.9327 0.9382 0.9382 0.9382 0.8764 0.8764
Densenet-201 0.8769 0.9399 0.9079 0.9054 0.9052 0.8132 0.8106
Inception_v3 0.9313 0.9297 0.9306 0.9306 0.9306 0.8611 0.8611
Inc. Resnet_v2 0.9662 0.9556 0.9539 0.9539 0.9539 0.9179 0.9179
Resnet-50 0.9727 0.9237 0.9536 0.9517 0.9617 0.9054 0.9035
Resnet-101 0.9710 0.9419 0.9566 0.9562 0.9562 0.9129 0.9124
Resnet-152 0.9726 0.9215 0.9525 0.9505 0.9505 0.9031 0.9011
Squeeze Net 0.9562 0.9311 0.9438 0.9435 0.9435 0.8874 0.8871
Proposed 0.9778 0.9633 0.9682 0.9682 0.9682 0.9364 0.9364

5.5. Performance Comparison with Existing Methods

We also compare the performance of the proposed CNN model with other malaria
detectors to evaluate its effectiveness. The compared methods include state-of-the-art and
widely accepted automated malaria detection algorithms, including [11,12,51–56]. The
malaria detection algorithm proposed by Fatima et al. [11] uses adaptive thresholding
technique with a morphological image-processing tools. Specifically, object contours and
the eight-connected rule are exploited to confirm the existence of malaria parasites in
the cell. The malaria detector presented by Das et al. in [12] uses a marker-controlled
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watershed approach to segment the erythrocytes. Various features describing the shape,
size, and texture characteristics of segmented erythrocytes are computed and classified
with a support vector machine. In Hung [51] algorithm, a faster, region-based convolutional
neural network (Faster R-CNN) is proposed for malaria parasite detection. The model is
pre-trained on ImageNet and is fine-tuned on the malaria dataset. Sanchez [55] also uses a
deep convolutional neural network for malaria parasite detection. Pan et al. [52] proposed
a deep convolutional neural-network-based algorithm for malaria detection. It uses Otsu’s
method and morphological operations for RBC segmentation, and LeNet-5 [81]-based CNN
architecture is used for cell classification. A transfer learning based approach is presented
by Vijayalakshmi et al. [53] for identifying malaria-infected cells in microscopic blood
images. The presented model is a unification of VGG and support vector machine. The
malaria detection algorithm introduced by Rajaraman et al. [54] consists of a three-layer
convolutional neural network. It is a fully connected sequential architecture. A deep belief
network-based malaria detection approach is proposed by Bibin et al. [56].

The performance achieved by the proposed and the compared methods is presented
Table 4. The datasets used in some of the compared methods were different from the
test dataset, and therefore such a comparison might not be just; nonetheless, it can help
to assess the effectiveness of the proposed method. The results show that our method
performs better than the compared methods in all performance metrics except sensitivity,
where the Das [12] algorithm performs better; however, its specificity and accuracy are
considerably lower than the proposed method. The performance results of Rajaraman,
Fatima, and proposed algorithms are computed over the same dataset. These statistics
show that the proposed method performs the best, followed by the Rajaraman method,
which achieves a good detection rate.

The results presented in Table 4 indicate that the proposed deep malaria detector
is an efficient and reliable tool to test microscopic blood smears for Plasmodium parasite
infection. The proposed method exploits the bilateral filtering to suppress the noise in
the images and provide better quality images for model training. Moreover, the data
augmentation techniques allow variations in the dataset that helps in improving the
performance and also generalizes the model to avoid over-fitting. It is also worth noting
that the computational cost of the proposed method is reduced by using a 3× 3 convolution
filter for all convolutional layers, which eventually reduces the number of input channels.
The deep learning models discussed in Table 4 have at least 16 layers and a large number
of training parameters. Contrastingly, the proposed CNN architecture has only 8 layers
and requires fewer training parameters compared to other deep learning models.

Table 4. Performance comparison of the proposed and the compared methods. Size represents the number of images in the
dataset. The best results are marked in bold.

Method Dataset Size Specificity Sensitivity Precision Accuracy F1 Score

Das [12] Self collected – 0.6890 0.9810 – 0.8400 –
Sanchez [55] – – – – 0.8927 – 0.9530
Hung [51] Self collected 1300 0.8519 0.7766 0.7804 0.8215 0.7784
Bibin [56] Self collected 630 0.9590 0.9760 – 0.9630 0.8960
Pan [52] PEIR-VM 24,648 0.8273 0.7402 0.7439 0.7921 0.7420
Rajaraman [54] NIH dataset 27,558 0.9720 0.9470 – 0.9590 0.9590
Vijayalakshmi [53] Self collected 2550 0.9292 0.9344 0.8995 0.9313 0.9166
Fatima [11] NIH dataset 27,558 0.9500 0.8860 0.9466 0.9180 0.9153
Proposed NIH dataset 27,558 0.9778 0.9633 0.9682 0.9682 0.9682

5.6. Time Complexity Analysis

The training time of deep learning models increases with the number of parameters
and weights. We observe the training time of the deep learning models used in our study
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for 25 epochs to evaluate their time complexity; the results are shown in Figure 7a. We recall
that 173,700 images of the test dataset have been used in training. The results show that our
model takes around 25 min for training, which is less than all the compared models. The
reason for this computational efficiency is its small number of convolutional layers with
a small number of parameters that eventually require less time for training. The VGG-19
and Inception models exhibit the best training times amongst the rest of the models. We
also evaluated the testing time of compared models for complete testing data containing
8272 images, the results are presented in Figure 7b. The proposed model takes 5 s for a
complete testing dataset, less than the other compared models. Among the rest of the
models, the SqueezeNet model takes 6 s for testing, and it took around 30 min for training.
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Figure 7. Execution time analysis: (a) Training time comparison of deep learning models for malaria detection., (b) Testing
time comparison of deep learning models for malaria detection. The reported time is the time the model takes for the whole
test dataset (8272 images).

6. Conclusions

In this paper, we proposed a deep learning solution for automated malaria detection
from microscopic blood smears. The proposed CNN model exploits the bilateral filtering to
remove noise from images and uses image augmentation techniques to achieve generaliza-
tion. We also evaluated different deep learning models for malaria detection problems and
compared their performance with the proposed method. The performance of the proposed
method is also compared with the existing automated malaria detectors. The experimental
evaluations performed on a benchmark dataset show that the proposed method performs
better than other deep learning models. The proposed method also outperforms the com-
pared malaria detection algorithms by achieving more than 0.96 accuracy and F1 score. A
time complexity analysis shows that our method is computationally efficient.
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